

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgements – ORNL Team

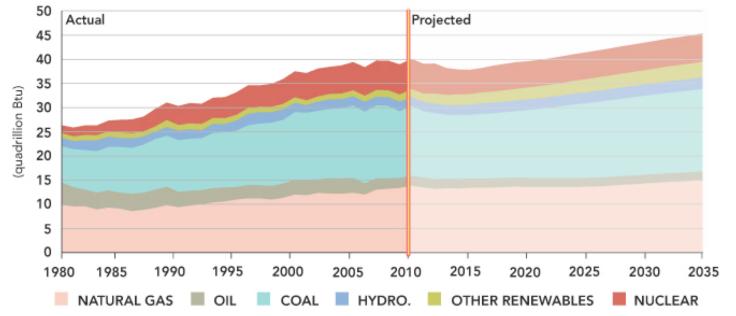
- Michael Starke
- Heather Buckberry
- Piljae Im
- Helia Zandi
- Jin Dong
- Jeff Munk
- Chris Winstead
- James Nutaro
- Brian Fricke

- Mahabir Bhandari
- Pooran Joshi
- Madhu Chinthavali
- Jian Sun
- Robert Smith
- Mohammed Olama
- Alex Melin
- Borui Cui
- Supriya Chinthavali

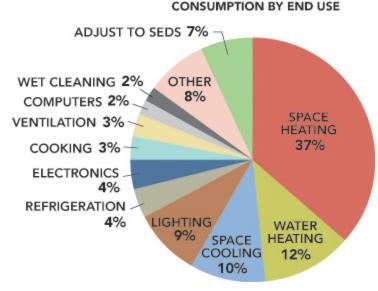
- Stephen Killough
- Sonny Xue
- Kyle Gluesenkamp
- Vishal Sharma
- Jaewon Joe
- Students
- Collaborators

Opportunity Space

Buildings consume 74% electricity produced in the US


Buildings have the potential to reduce their consumption by 20%-30% (18 quads or 2,500 million tons of oil) through advanced sensors and controls

Potential nationwide value of demand dispatch could be several billion dollars yearly in reduced energy costs with 10% participation (NETL, Demand Dispatch – Intelligent Demand for a More Efficient Grid, August 2011)


One-fourth of the 713 GW of US electricity demand in 2010 could be dispatchable

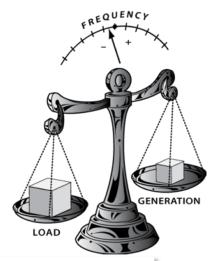
90% of the commercial buildings are < 50,000 ft² and need aggregation

BUILDINGS SECTOR PRIMARY ENERGY CONSUMPTION

BUILDINGS SITE ENERGY CONSUMPTION BY END USE

5.5 million commercial, 117 million residential, projected to be 80% of load growth through 2040

It is a delicate balancing act


Load > Generation – under frequency

Load < Generation – over frequency

When you see frequency change – it is too late.

master to edi

Currently: Not real-time

Why is this important now?

- Bookkeeping to ensure that load and generation are balanced
- Measure power flows
- Control the balance in our balancing area.
- Integration of renewables (wind and solar)
- Reduction requirements of emissions
- Cost of ancillary generation
- Increasing reliability requirements
- Increasing demand

TVA Asks For Restraint In Power Use During Extreme Cold

Thursday, January 23, 2014

Frigid temperatures are causing high demand for electricity across the Southeastern United States. As a result, the Tennessee Valley Authority is asking all electric power consumers, including residential, commercial and industrial customers, to voluntarily reduce their use electricity until Friday afternoon.

Peak

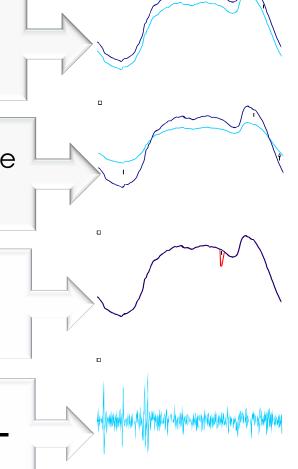
Direct reduction

Each degree <20

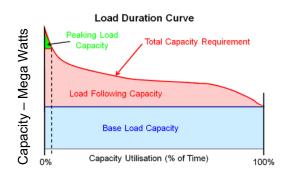
31000 - 33000 MW

1000 MW

400 MW


What types of responsive loads are needed

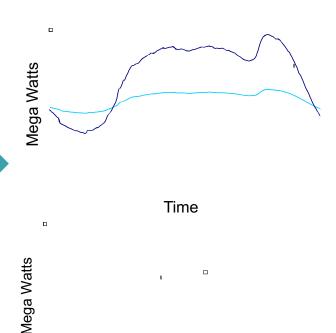
Energy efficiency: Reduce electricity consumption and usually reduce peak demand.


Peak shaving/shifting: Move consumption from day to night.(Price Response, Direct Load Control)

Reliability response (contingency response): Requires the fastest, shortest duration (required during power system "events") – engage DERs and Power Electronics

Regulation response: Continuously follows the power system's minute-to-minute commands to balance the aggregate system – **very new and could dramatically change electricity costs**

ORNL's Focus-Transactive Control

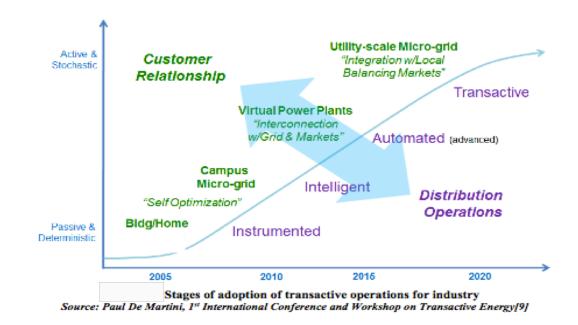


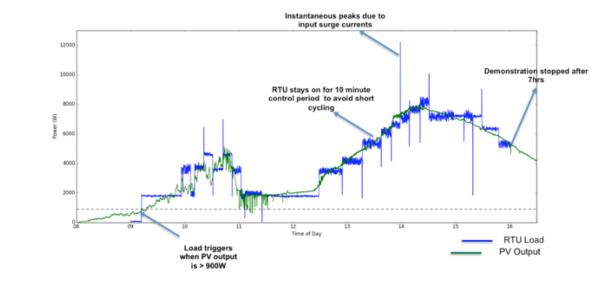
Coordinate Large Number of Building Loads

- Coordinate building loads Grid response
- Advanced control systems Retrofit platforms
- Embedded in next generation equipment
- Field Verification and Validation

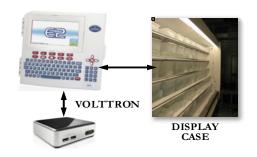
Reduce Energy Intensity and Increase Energy Efficiency

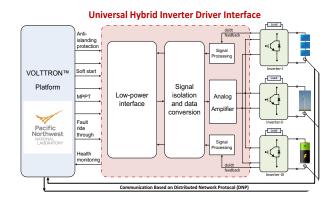
Increase Load Flexibility and Improve Grid Resiliency


Time



Next Generation Equipment


Value Proposition


- From the Grid Perspective
 - Increase and enhance the hosting capacity renewables and improve resiliency - "thinking beyond DR"
 - Fast Demand Response
 - Ancillary Services
 - Load Shifting
- From the Building Perspective
 - Enable behind the meter automation technologies to drive EE deeper or through new means - "thinking beyond EE"
 - Fully automated, self learning, dynamic and responsive
 - Create a market for EE solutions
 - Seamless deployment

Current ORNL Projects - Snapshot

Connected Loads

Retrofit Supervisory Control Systems AI/Machine Learning Virtual/Thermal Storage

DER Integration

Open-source Interfaces to Inverters and **Appliances**

RE-responsive Load Control Virtual Inertia

Field Evaluations

Resilient Distribution Systems Connected Neighborhood

Project Team

Southern Company:
Utility provider, host of developed software, API developer, historian.

Oak Ridge National Laboratory: Transactive platform architect, optimization, data evaluator, dashboard

Alabama Power: Centralized

Rheem: Water Heater

and Device API

provider

Carrier: HVAC and

Device API provider

MICROGRID:

<u>Samsung</u>: Energy

Storage

PowerSecure: Power

Electronics and

Integration

ORNL: Microgrid

Controller

provider

SkyCentrics: Water

Heater API

Lennox: HVAC provider

Ecobee: HVAC API

provider

Delta: Power Electronics

System and API

LG Chem: Energy

Storage Provider

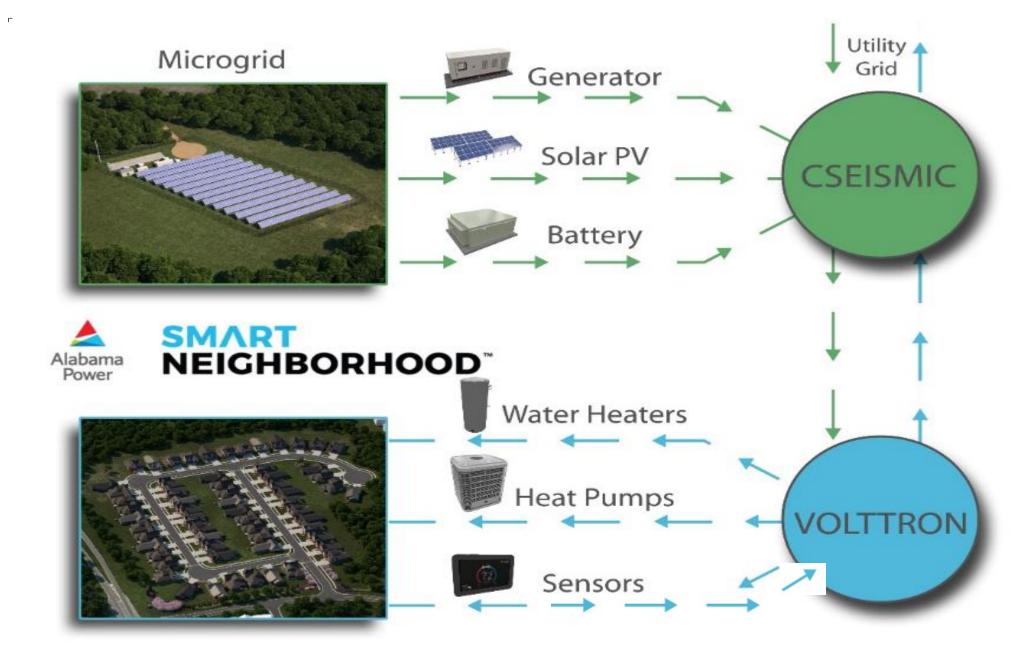
eMotor Works: EV

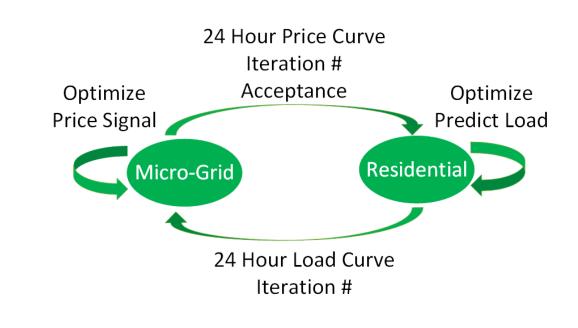
Charger

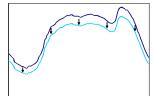
Georgia Power:

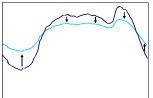
Decentralized

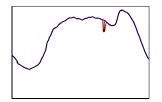


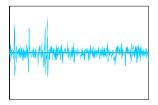


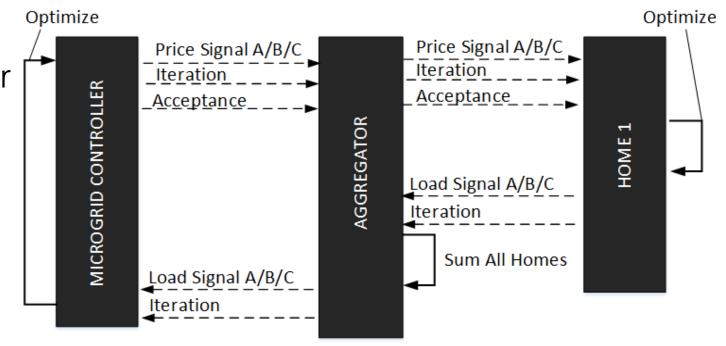



Two-levels of optimization


Residential-level Optimization

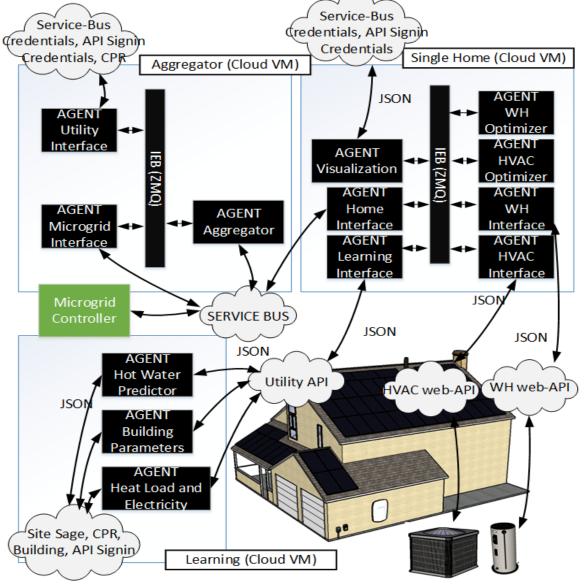

Equipment Models Home Model Home Energy Management Setpoints Weather (1b) - (1c)**Energy Optimization** Sub-Metering


Neighborhood-level Optimization

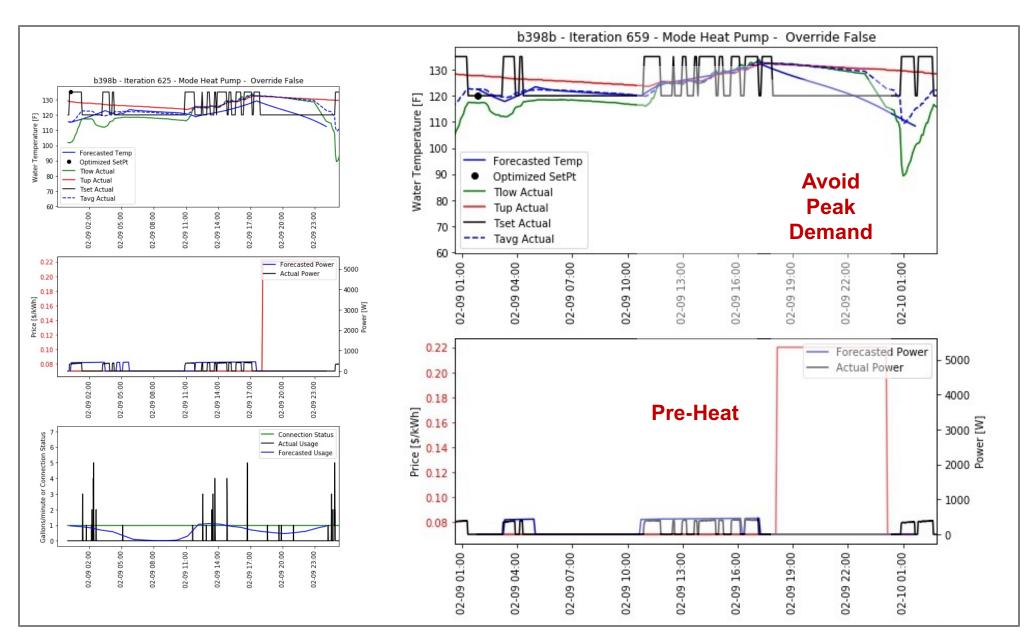


Approach: Transactive Control (Alabama Centralized)

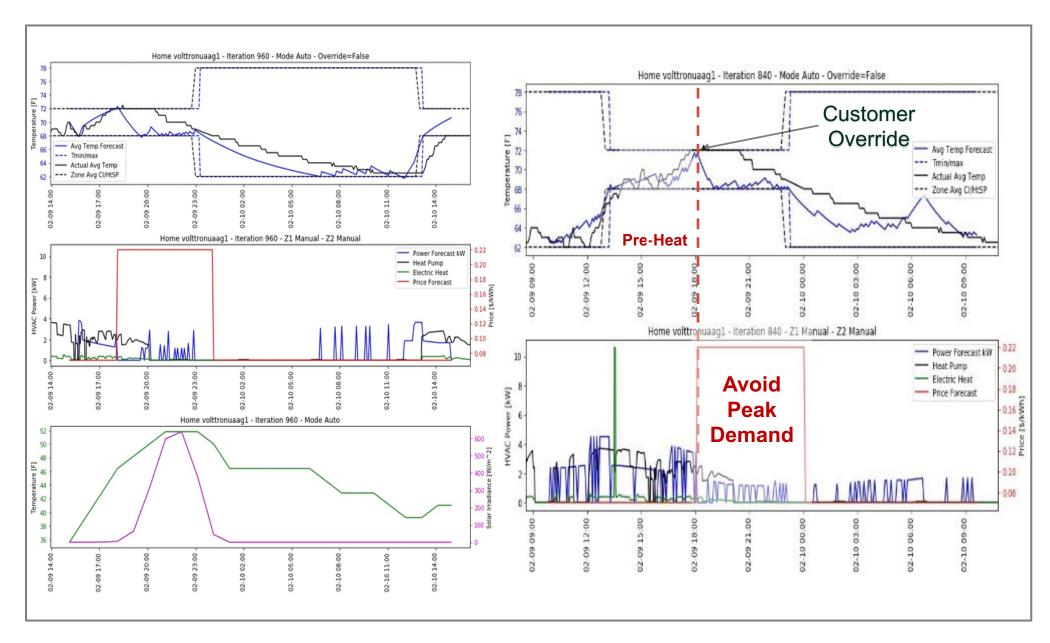
 Microgrid controller and VOLTTRON 'negotiate/transact' a load/price

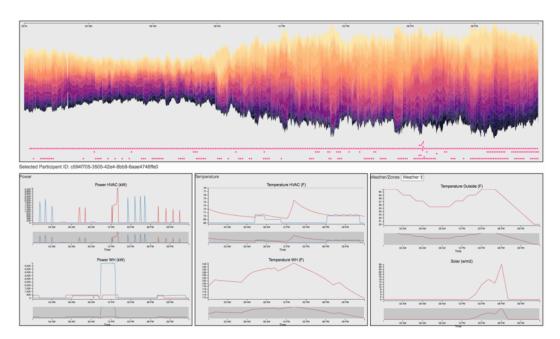

- Microgrid controller optimizes resources and creates 24 hour pricing offer.
- VOLTTRON allocates price signals to resources (loads) which optimize and provide total load projection
- This process iterates until Microgrid controller meets minimum convergence criteria.

Approach – Agent Framework (Alabama, Centralized)

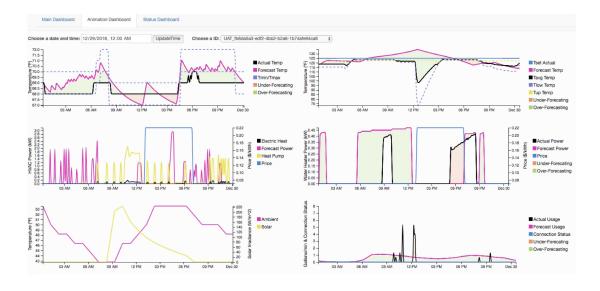

Agent based framework to support autonomous integration and negotiation of load resources with a microgrid controller.

Agent	Purpose				
Home Interface	Data Pass through and collector of optimization and electrical consumption projections for Aggregator agent				
HVAC Interface	Translates HVAC decisions and status to vendor API				
Water Heater Interface	Translates Water Heater decisions and status to vendor API				
HVAC Optimizer	Utilizes building specifications, forecasted weather data, building parameter data, price forecast, and HVAC status data to optimally schedule HVAC and provide expected electrical consumption.				
Water Heater Optimizer	Utilizes predicted water consumption, price forecast, and Water Heater status data to optimally schedule Water Heater and provide expected electrical consumption.				
SoCoInterface	Pulls data from Southern Company API which includes weather, building specifications, historical load measurements by circuit, device credentials, and historical data.				
Learning	Utilizes data collected from SoCo stored data to perform predictions on hot water usage, internal heat loads, building parameters, etc.				





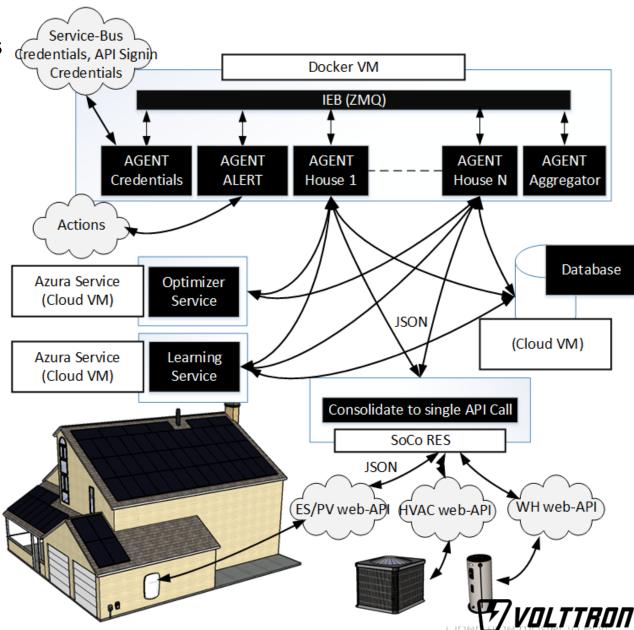
HVAC CONTROLS



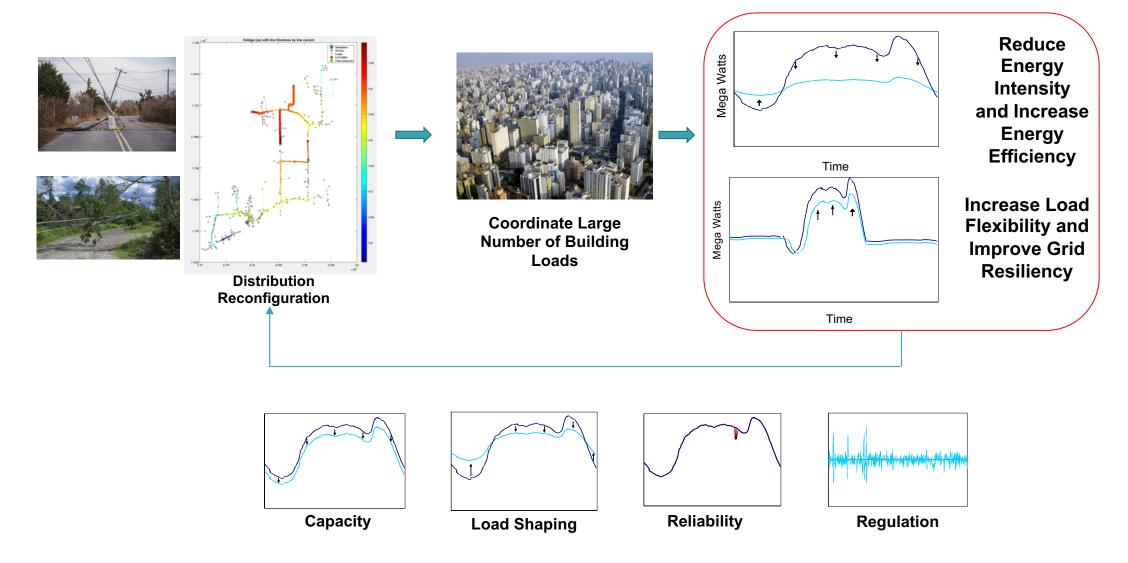
Dashboards in Development for Analysis

- Live situational awareness of the neighborhood
 - (HVAC and WH Power usage,
 - Connection status
 - Weather, Zonal level
- WH and HVAC Optimization Animation
 - Price Signals
 - Over-forecasting and under-forecasting
- HVAC and WH Status: Activity, Mode, Temperatures, Optimization and Override status

ive HKRC Status how 10 2 entries												Sea	refe
Participant ID		* UAT	OPT_Flag	OVR_Flag		Activity		Mode	Last Updated Ti	me (OPT/OVR.)		Last Updated Time (Activity)	
00812aw8-ad7c-468d-93d0-25b1dbc59b43	1	false	Optimal	false		Manual/Manual		Heat	2019-03-21T19:56	9:46.455964Z		2019-03-21T19:58:36:656224Z	
0092:s44c-46d6-4190-be16-596ab563639c		true	Optimal	false		Manual/Manual/Home		Heat	2019-03-21T20:26	32000979.303Z		2019-03-21T20:29:28:0467717Z	
085a1e75-608b-4995-9811-14b38cc85c8b		false	Optimal	false		Manual		Off	2019-03-21T18:58	3:29:3640306Z		2019-03-21T19:58:41.1180314Z	
13efee76-4744-42e0-8o8f-878fc21e0fb8		false	Optimal	false		Manuel		Heat	2019-03-21T19:58	3:23.8026296Z		2019-03-21719:67:49.882724Z	
166405d5-5806-478c-a547-34bed99b8696		false	Optimal	false		Manual/Manual		Heat	2019-03-21T19:56	3,29,5910016Z		2019-03-21T19:58:34.4144445Z	
1bc3fcdf-643f-4b0c-91db-021bf086d6bc		false	Optimal	false		Manual		Auto	2019-03-21720:26	9:40.1579803Z		2019-03-21T20:25:52:3287933Z	
1e00do4a-3527-45c5-a556-1fase1c3d1da		false	Optimal	false		Manual/Manual		Heat	2019-03-21T19:56	5:41.4054148Z		2019-03-21T19:58:09.461806Z	
2907e670-dc5a-41fb-a702-f917c547b690		No	Optimal	false		Manual/Manual		Auto	2019-03-21T20:26	9:35.4607597Z		2019-05-21T20:25:42:9281216Z	
29272219-2141-4270-ad1a-abbfd2fe489a		true	Optimal	false		Manual/Manual/Manual		Heat	2019-03-21T19:58	1:48.3230002Z		2019-03-21T19:59:38:826145Z	
29532/3e-7477-49a3-62b5-adba5749af73		false	Optimal	false		Manual/Manual		Auto	2019-03-21T19:59	0:04.0887915Z		2019-03-21T19:58:35:0588771Z	
howing 1 to 10 of 61 entries												Previous 1 2 3	4 5
ive WH Status Now (10 II) entries												See	refe
Participant ID .	UAT	OPT_Flag			OVR_Flag	Mode	Tup		Tlow	Teet	Last Updated Time (OPT/OVR.)	Last Updated Time (Tup/Tiow/Tset)	
00812ae8-ad7c-468d-93d0- 2501dbc59b43	false	Optimal			True	Energy Sever	129.94403076171875	3	125.08368133544922	135	2019-03-21T19:56:27.2974687Z	2019-03-21T19:58:38.9508363Z	
0090544c-46d6-4190-bell6-596ab563639c	true	Optimal			True	Energy Saver	117.25647735595703	3	118.91788482666016	120	2019-03-21T20:27:03.3417775Z	2019-03-21T20:25:42.6342994Z	
085a1e75-609b-4995-9811-14b38cdf0c8b	Silve	Optimal			True	Energy Saver	130.96149681640625	5	101.626708984375	135	2019-03-21T19:59:44.3629269Z	2019-03-21T19:56:51.3385385Z	
13efee76-4744-42e0-8c8f-878fc21e0fb8	Nise	Optimal			True	Energy Saver	131.22927856445313	t	129.71563720703125	135	2019-03-21T19:55:41.8490167Z	2019-03-21719:56:34.05371162	
166405c5-5806-478c-a547- 34bed99b8666	Nise	Optimal			True	Energy Saver	114.46562194824219		106.6512680053711	120	2019-03-21719:59:26:77347412	2019-03-21T19:56:55.3716023Z	
1bc3fcdf-643f-4b0c-91db-021bf086d8bc	Nite	Optimal			True	Energy Saver	116.64080047607422	2	115.82583618164062	120	2019-03-21T20:28:07.4559914Z	2019-03-21T20:25:01.7961431Z	
1e00do4a-3527-45c5-a556-1faae1c3d1da	false	OPTIMIZATION ERROR messages	look at warning_WaterHeater_NotCo	vnected	False	Heat Pump	124.59012603759766	1	83.78563690185547	130	2019-00-21T19:58:18.7001536Z	2019-03-21T19:56:39.1539731Z	
2307w670-dc5a-41fb-a702-f917c547b690	false	Optimal			True	High Demand	131.43130483164062	t	115.94196319580078	132	2019-03-21T20:26:43.4455037Z	2019-03-21720:25:04.14947052	
29272219-2141-4270-ad1a-abb552fe486a	true	Optimal			True	Energy Saver	118.18515014648438	3	119.66390991210938	120	2019-03-21T19:57:56.7593208Z	2019-03-21719:56:43.81786162	
29532/3e 7477-49x3-6255-adbx5749xf73	Nise	Optimal			True	Energy Saver	131.1062000732422		131.51107768085938	135	2019-03-21T19:55:25:0695566Z	2019-03-21T19:56:37.7315823Z	
howing 1 to 10 of 61 entries												Previous 1 2 3	

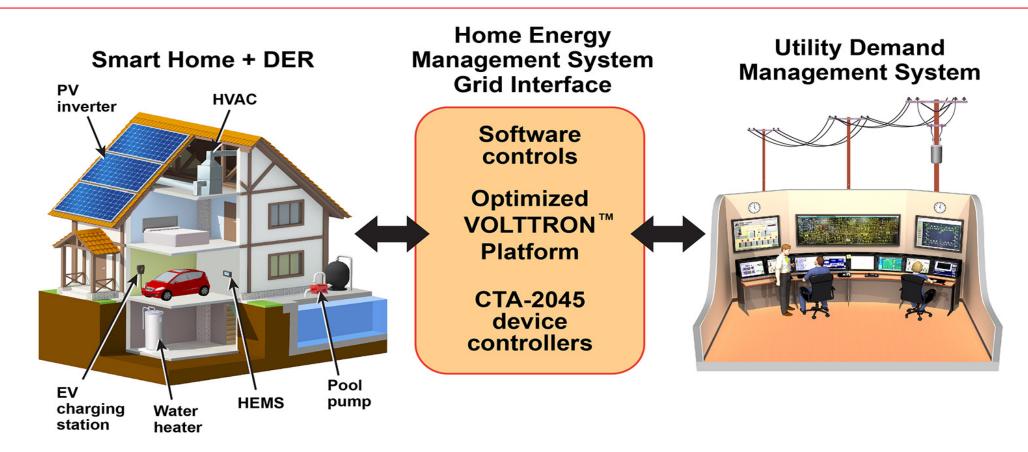

Approach – Agent Framework (Georgia, Decentralized)

Agent based framework to support autonomous integration and negotiation of load resources.


Architecture modified based on findings from Alabama.

Agent	Purpose
Home	Collects and sends device data and control setpoints to SoCo RES, calls optimization service, broadcasts and listens to Aggregator for price signal
ALERT	Receives notifications of system issues from each House and reports actions to SoCo system
Credentials	Collects necessary credentials to be used by each house management system.
Aggregator	Collects and distributes data to each home management system

Service	Purpose			
Optimizer	Service spawned upon a call to optimize based on data provided. Data provided is projected device performance and load control solution.			
Learning	Service spawned upon a call to develop variables needed for optimization based on historical data			



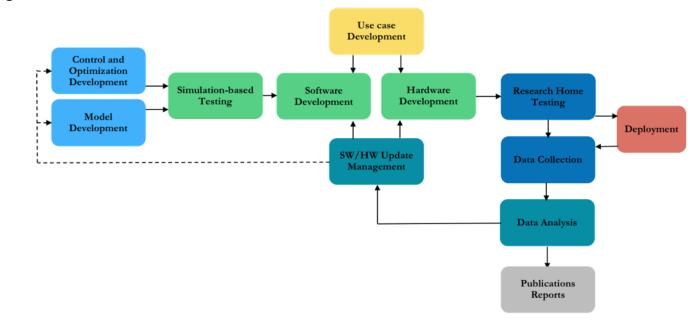
Improve Resilience – Engaging Building Loads/DERs

Resilient Distribution Systems

Resilient distribution systems with high penetration of distributed energy resources (DERs) that can withstand disasters and faults by intelligent reconfiguration

Develop end-to-end interoperable software and hardware system for engaging residential responsive loads and DERs to provide grid services

Integration of Responsive Residential Loads into Distribution Management Systems


End-to-end system for engaging residential DERs to provide grid resilience services

Project Objectives

- Develop interoperable home energy management system (HEMS) as an interface to distribution-level integration of Residential loads and DERs to provide distribution resiliency services
- ✓ Develop transactive control system to co-optimize Loads performance to satisfy grid requirements and residential needs
- ✓ Deploy and validate the technology in field with utility partners

Value Proposition

- Increasing number of smart residential-level assets including controllable loads, rooftop solar, and storage technologies imposing new challenges in distribution operations
- ✓ These assets can be leveraged for enabling resilient rapid reconfiguration of the distribution circuits by managing demand, voltage, and power flows
- An end-to-end solution establishing interoperability across the meter and coordinated control technology is needed to engage residential loads for grid services
- ✓ The end-to-end system performance and resilience has to be validated in field for adoption

Modeling, Simulation, Controls, Software M&V, Software, Analytics

Hardware, Analytics, Deployment

Requirement
Definition,
Deployment master to edit

Devices and Integrated Systems Testing

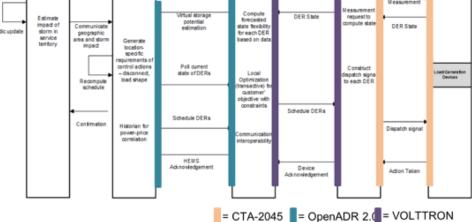
Method of Design - Systems to Enable Behind-the-Meter Grid Services Use case and System Architecture Development

Design Templates

- Stakeholder Questionnaire
- Use-case Narrative 14 use cases developed
- Actor Specifications
 - Information Exchange and Communication Interfaces

Graphical Representations

Layered architectural diagrams (information exchange sequence)

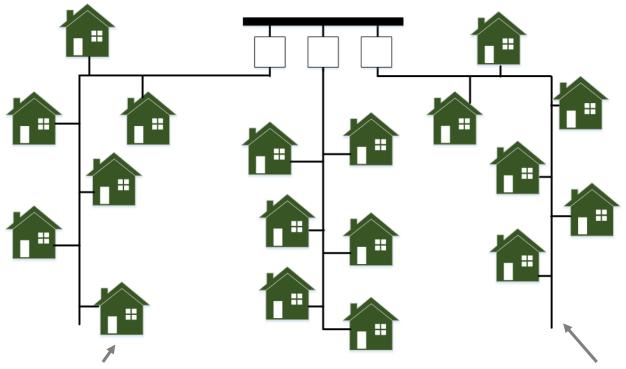

Unified Documentation

- System Design Package

System Architecture

- End-to-end system architecture to support hierarchical control of demand side assets to provide unified response
- Demand management system (DeMS) coordinates the communication with HEMS for transactive control using incentives to drive optimization
- Local HEMS coordinates device response to grid service request while maintaining customer constraints
- Interoperability and cybersecurity driven by requirement definition

Layered Architecture Diagrams Actor_b Actor_c Info_{21(0.0)} Info_{21(0.0)} Info_{21(0.0)} Info_{21(0.0)} Response_{ce} # Use case Sequence ADMS Lagic, Lag


System Design Package

SYSTEM DESIGN DOCUMENTS	;
USE-CASE NARRATIVE	SECTION 1
ARCHITECTURE	SECTION 2
ACTORS	SECTION 3
TECHNICAL REQUIREMENTS	SECTION 4
Operational (Logic)	Section 4.1
Information Exchange (Interfaces)	Section 4.2
ACTOR-TO-ACTOR INTERACTIONS (SEQUENCE DIAGRAMS)	SECTION 5
DESIGN VERIFICATION	SECTION 6
MEASUREMENT AND VERIFICATION	SECTION 7

Use Cases Developed

UC #1	Reduce Critical Peak Load
UC #2	Improve Disaster Preparedness through Real-time Situational Awareness and Distribution Operations Planning
UC #3	High Penetration of Renewable Energy in Distribution Systems
UC #4	Virtual networked microgrids in distribution circuits to enable resilience
UC #5	Improves Asset Utilization through Locational Pricing
UC #6	Reduce Outage and Recovery times through intelligent Cold Load Pickup
UC #7	Residential-level islanding with Assets Sensing a Grid Event
UC #8	Distribution Feeder-level Battery for Transmission Level Grid Service and Enabling
	Distribution Resilience
UC #9	Distribution Resilience Inverter Control to Prevent Power Generation Curtailment due to Control of Distribution-level Voltage Control Assets (e.g. capacitor banks)
UC #9	Inverter Control to Prevent Power Generation Curtailment due to Control of
	Inverter Control to Prevent Power Generation Curtailment due to Control of Distribution-level Voltage Control Assets (e.g. capacitor banks) Adaptive control of DERs on a Distribution Radial Line to Stabilize Voltage Sag

Decision Making and Optimization

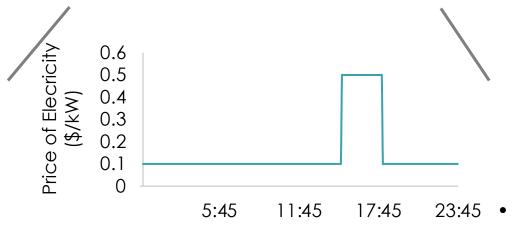
- **Resource Optimization**
- Battery Model
- Non Controlled Load

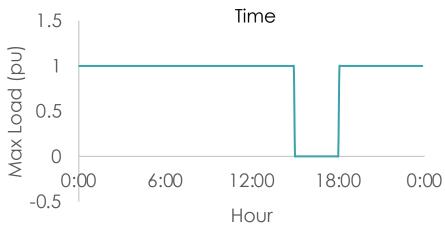
- **Electrical Network Constraints**
 - Real and Reactive Calcs
 - Voltage Limits

Optimizer Output

Nodal:

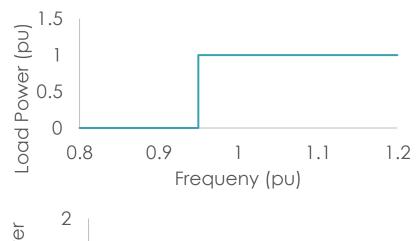
- Target P/Q
- System Voltages

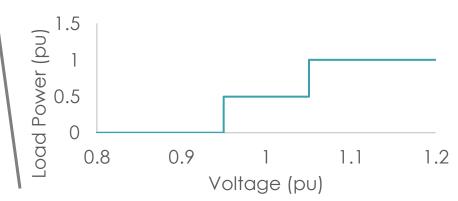

- Electricity Price Signal
- Maximum Power Signal
- Reference Control Signals



Output from Optimization and Control

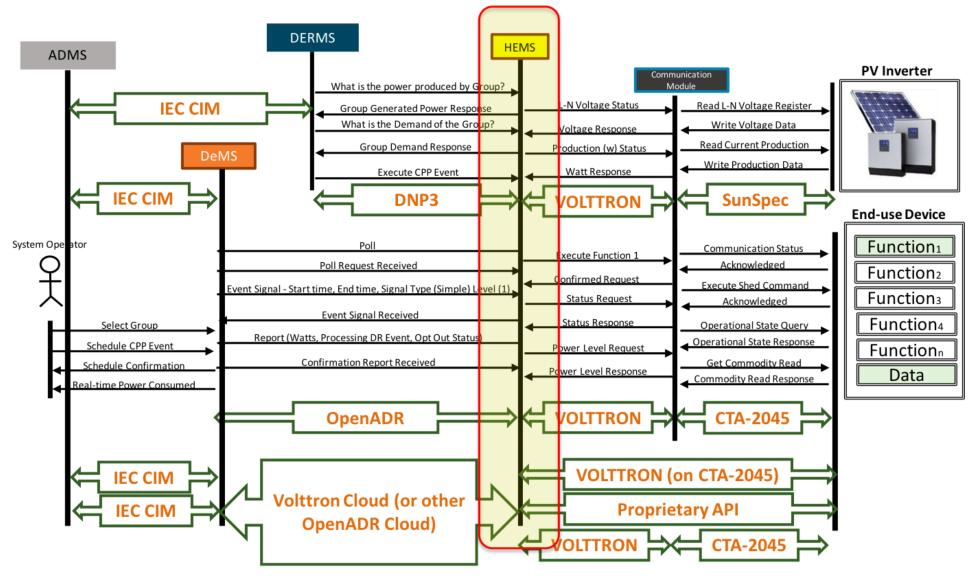
TIME BASED OUTPUT REQUESTS

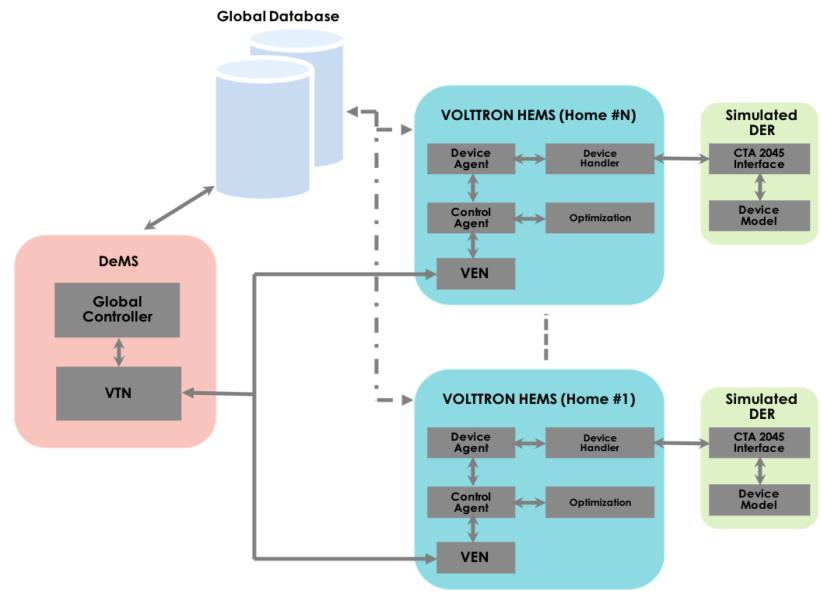

Incentivize or restrict local control options.

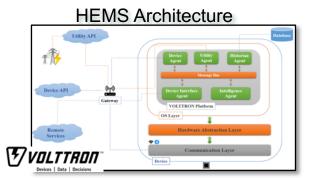


AUTONOMOUS RESPONSE

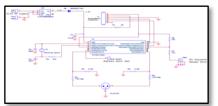
Device performs automatic control based on local measurements -







System Architecture - Detail Enable wide-area responsive residential loads


Software Architecture

CTA-2045 Cellular/Wi-Fi Raspberry PI Zero

Frequency and Voltage Sensing

Project Timeline

Year 1

Requirement **Definition**

Use Case Development

Software **Specification**

Hardware **Specification** Year 1/Year 2

Technology Development

Edge Intelligence

Transactive Control System

Software Platform

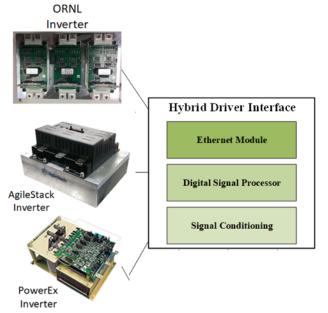
Hardware Platform Interface to Load

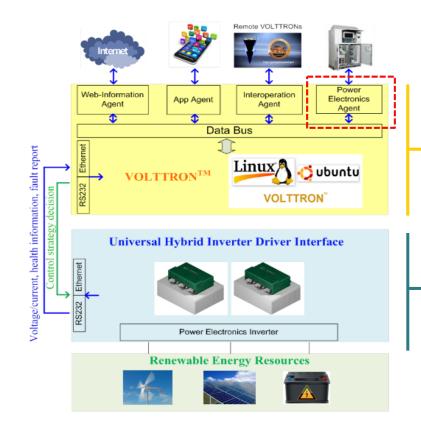
Year 3

Field Evaluation

Deployment Testing

Evaluation Scenarios


Transactive Power Electronic Systems


Objective:

Support increased efficiency for buildings and also support grid needs through advanced control and communications.

Potential Resources

- Variable Speed Loads
- Renewable Systems
- Building level energy storage

Advanced VOLTTRONTM Control Platform (Software)

- New Power Electronics Agent Interface
- Control strategy decision maker
- Inverter status monitoring
- Communicate with other control platforms

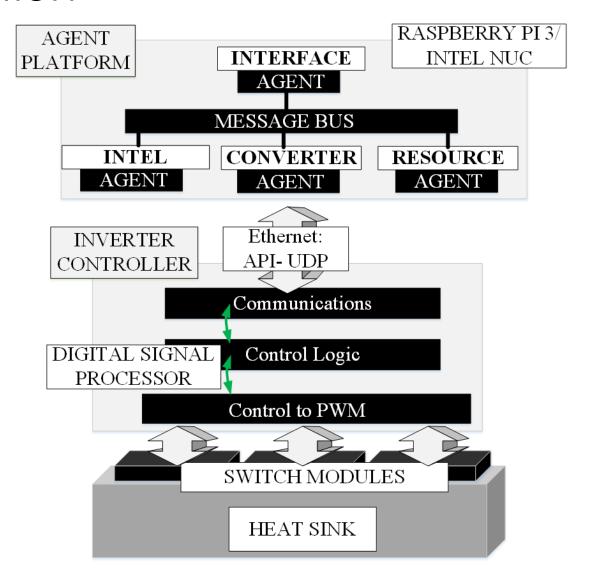
Universal Hybrid Driver Interface (Hardware)

- Control strategy executor
- Universal control system coordinated with different inverter vendors
- Communication interface between RES and VOLTTRONTM

Considerations:

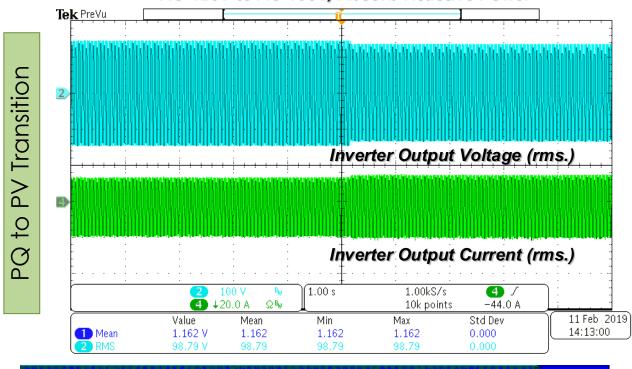
Advanced controls should be able to be inserted into both existing and newly developed power electronic systems.

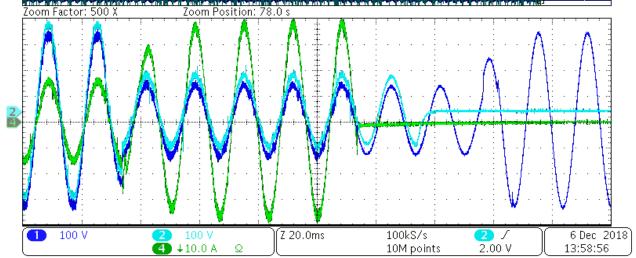
Hardware and Software Solution

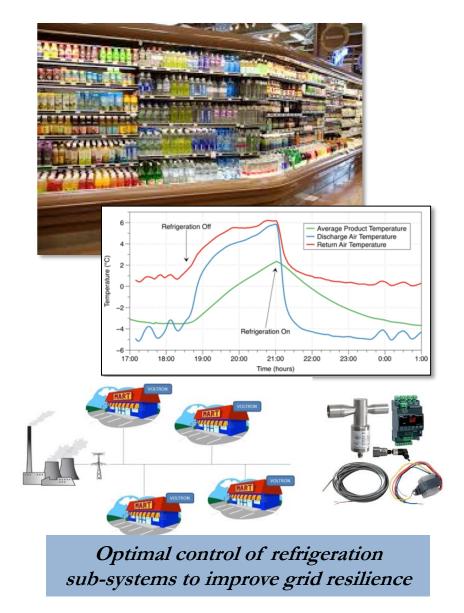

Agent	Purpose
Converter	Extracts status information and sends control information to an inverter.
Resource	Extracts status information and sends control information to a resource (could be energy storage as an example)
Intelligence	Coordinates decisions between different agents to ensure full system operation.
Interface	Sends status and takes request with exterior communication systems.

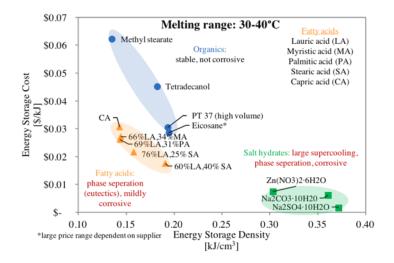
ORNL-Developed Commercialized DSP Controller Employing Ethernet Port

ORNL-Developed Universal Inverter Interface

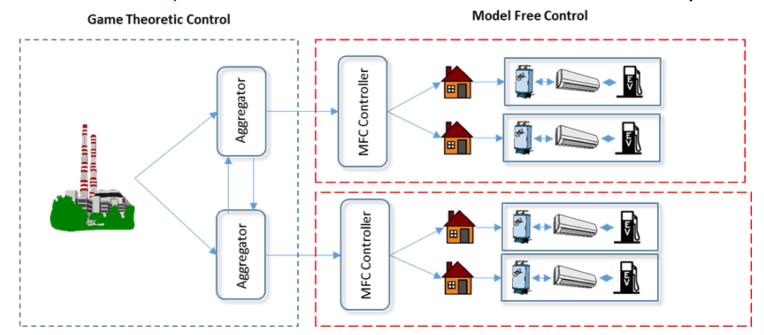



Accomplishments


Function	Role of proposed hybrid interface	Simulation verified	Coding verified
Grid-tied operation	Adaptive grid voltage tracking	✓	✓
PQ/PV/FQ mode	Power flow management	✓	✓
Islanding operation	Reconstruct a virtual grid	✓	✓
Anti-islanding protection	Seamless mode transfer through islanding detection	✓	✓
Fault ride through	Fault tolerant control	/	✓


Automatic Mode Transition from PQ to PV AC-120V to AC-105V, Absorb Reactive Power

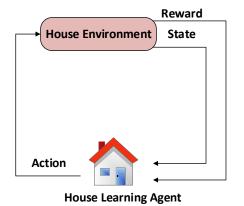
Grid Responsive Virtual and Thermal Storage



Thermal storage using highly conductive composite PCM materials

Model Free Control: Two-layer Control Scheme

- Control exists in two hierarchies
- Aggregators negotiate upstream with a utility (and in competition with each other) in a Game Theoretic control
- The aggregator controls downstream equipment with Model Free Control
- Game Theoretic control in the upper-layer is utilized to generate an optimal reference load profile for use in the MFC lower-layer



Scalable Load Management Using Reinforcement Learning

Design, develop, and field evaluate a *transactive*, *scalable*, and *cost-effective* load management system using *Reinforcement Learning* (RL)

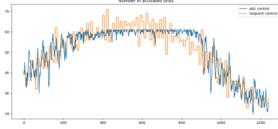
Project Objectives

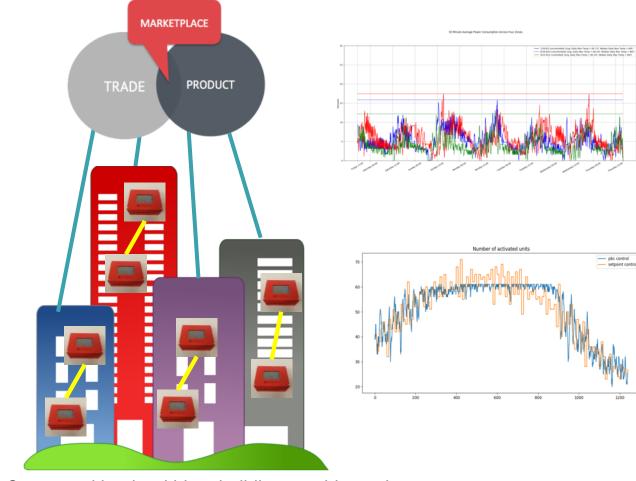
- Develop Reinforcement Learning-based optimization and control methods for understanding energy use patterns and for load scheduling
- Develop a scalable load management system to access flexibility in loads
- Perform field validation of the software framework and demonstrate benefits of running RL-based optimization and control in residential buildings

ORNL Yarnell Station Research House

Connected Loads – Peak Demand Reduction, Grid-Responsive Loads

- Supervisory load management application
 - Flat load profile to reduce peak demand charges
 - Enable transactive applications that are revenue generating for the building owner
 - Generate desired load shape
- Deployment focused
 - Retrofit deployment to existing stores
 - Utilize thermal storage for demand relief
- VOLTTRON applications integrated to operational strategy
 - Embedded devices realizing control functionality
 - Scalable retrofit deployment focused





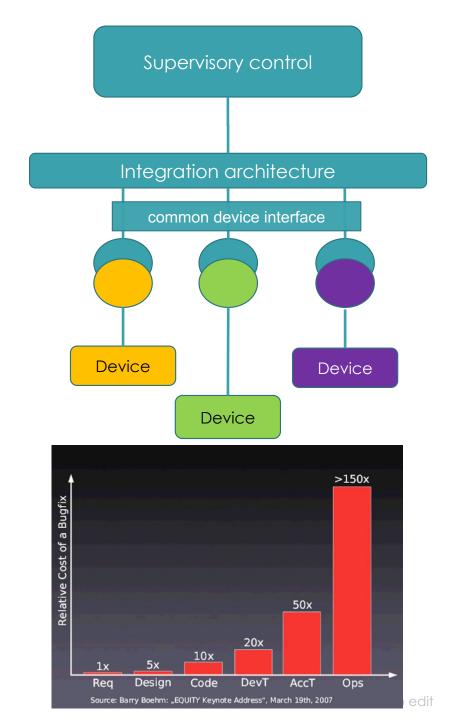
An Multi-level Strategy

- Our goal is an integrated set of control strategies that realize the three main aims:
 - Peak demand reduction, on demand defrost
 - **Energy efficiency**
 - Provide services to the electrical grid
- A priority-based scheme for achieving peak demand reduction within a building
- A transactive approach to demand management
 - Priorities and nominal load are communicated to a wide-area "marketplace" where they serve as the "price" of supplying the service: price a function of priority and nominal load
 - When a demand shape is requested, the "market" clears at "price" that meets the request
 - Loads that are below the clearing price provide the service and receive the economic benefit
 - Price function constructed to favor shedding of active loads with lowest priority and highest nominal power (i.e., cheapest)

Connected loads participate in a larger marketplace to provide grid services

Connected loads within a building provide peak demand reduction and energy efficiency to the building owner

Moving Forward


In-Network Intelligence

- Decentralized agents with defined dynamics
- Establish communication graph of the network of nodes
- Communication channel constraints
- Develop strategy that needs to be executed Peak Reduction etc.
- Decentralized control execution
 - slow time constant systems
 - fail-safe controls
 - low-commissioning costs

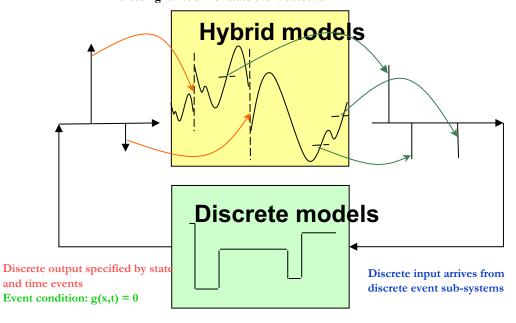
Moving forward

Automatic Commissioning

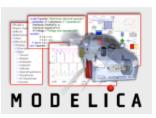
- Integrating legacy assets into these modern architectures can be costly if the legacy system comprises more than a handful of devices.
- Integration cost has two parts:
 - discovering what devices are available for use
 - building the custom software needed to glue existing devices into the integration framework.

Advanced Building Equipment

- Integrate advanced sensors and controls in equipment design
 - Grid Ready appliances
 - Design Intersection: Thermal design, control design, power electronics design
- Enable advanced functionality
 - Automated Fault Detection and Diagnosis
 - Automated commissioning

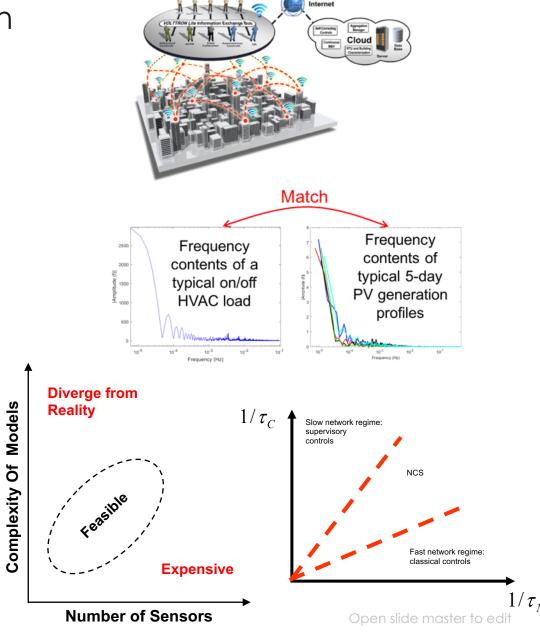


Moving Forward


Whole-building Dynamic System Modeling

- A scalable, continuous system solver.
- Integrated with a scalable algorithm for locating events that directly influence or are caused by continuous variables.
- Coupled with the management of events which indirectly influence and are influenced by the continuous variables.
- Large-scale simulation based testing

Internal dynamics described by DAE or ODE with zero crossing function for state event detection



NS-3

Summary

- Efficiency (building) & Resiliency (grid) can be significantly improved by responsive loads
- Transactive energy requires wide area control of loosely coupled loads
- Control response can be generated in a centralized or decentralized fashion
 - Utility level information
 - Building-level loads
- Transactive control
 - Guarantee quality of service
 - Non-ideal communication attributes
 - Stochastic energy usage and generation patterns
 - Operational constraints
 - Self-organization and aggregation

